
COP 3223: C Programming (Dynamic Structures – Part 1) Page 1 © Dr. Mark J. Llewellyn

COP 3223: C Programming

Spring 2009

Dynamic Storage Structures In C – Part 1

School of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3223/spr2009/section1

COP 3223: C Programming (Dynamic Structures – Part 1) Page 2 © Dr. Mark J. Llewellyn

Dynamic Storage Structures In C

• The data structures that we have examined so far in this course, such

as arrays, have all had their memory statically allocated. In other

words, the memory for the variable was reserved when the program

was loaded into memory and once loaded the memory the allocation

could not change, i.e., it was static. Thus, if we declared the array to

contain 10 integer elements, it was not possible once the program

was compiled and loaded into memory to change the number of

elements to 20.

• Statically allocated data structures place a fairly severe handicap on

the program developer by forcing them to choose the largest possible

size that might every be needed for their data structures, even if the

majority of the time the program execution does not actually require

that much space for the data structure.

• The solution to this problem is to dynamically allocate memory to

data structures while the program is in execution.

COP 3223: C Programming (Dynamic Structures – Part 1) Page 3 © Dr. Mark J. Llewellyn

Dynamic Storage Structures In C

• Dynamic memory allocation allows the size of a data structure to

expand and contract as needed during the execution of a program as

well as across multiple executions of the same program. Thus, one

execution of the program might require 50 elements in a structure

while another execution of the same program might require 5000

elements.

• As an example, consider the simple database program from the

previous set of notes (Structures In C – Part 3). The array size was

set to hold a maximum of 50 students, if we had 51 students or

50,000 students we would need to modify the program, recompile it,

and execute the new version to accommodate the larger number of

students. If we modified it to hold up to 50, 000 students but only

loaded 10 student’s information, the remaining 49, 990 locations

would be allocated to our program but unused – a terrible waste of

memory.

COP 3223: C Programming (Dynamic Structures – Part 1) Page 4 © Dr. Mark J. Llewellyn

Dynamic Storage Structures In C

• Although it is possible for dynamic memory to be used for any

type of data, it is most commonly used for strings, arrays, and

structures.

• One of the most useful techniques with dynamic memory

allocation is with dynamic allocated structures in which each

structure variable contains a pointer to another structure of the

same type, allowing them to be linked together to form data

structures known as lists, trees, and many other types of data

structures.

• Such structures are often called self-referential structures,

because they contain a member which is a pointer to a structure

of the same type. We’ll see this shortly.

COP 3223: C Programming (Dynamic Structures – Part 1) Page 5 © Dr. Mark J. Llewellyn

Dynamic Storage Allocation Functions

• C provides three different mechanisms for allocating

memory dynamically. This is done with one of three

memory allocation functions which are all declared in the

<stdlib.h> header file. These functions are:

malloc – allocates a block of memory but does not

initialize it.

calloc – allocates a block of memory and clears it.

realloc – resizes a previously allocated block of memory.

• Of the three functions, malloc is the most commonly used.

It is more efficient that calloc, since it does not clear the

memory block that it allocates.

COP 3223: C Programming (Dynamic Structures – Part 1) Page 6 © Dr. Mark J. Llewellyn

Dynamic Storage Allocation Functions

The function prototype for malloc is:

void *malloc (size_t size);

malloc allocates a block of size bytes and returns

a pointer to the first byte in the block. The parameter

size has type size_t which is an unsigned integer

type defined in the C library. Unless you are

allocating a very large block of memory, you can think

of size as just an int. malloc returns a null

pointer if a block of size is not available.

COP 3223: C Programming (Dynamic Structures – Part 1) Page 7 © Dr. Mark J. Llewellyn

Dynamic Storage Allocation Functions

The function prototype for calloc is:

void *calloc(size_t nmemb, size_t size);

calloc is a better solution when allocating memory

for an array. calloc allocates space for an array

with nmemb elements, each of which is size bytes

long; it returns a null pointer if the requested space is

not available. After allocating the memory, calloc

initializes it by setting every bit in the allocation space

to 0.

COP 3223: C Programming (Dynamic Structures – Part 1) Page 8 © Dr. Mark J. Llewellyn

Dynamic Storage Allocation Functions

The function prototype for realloc is:

void *realloc(void *ptr, size_t size);

Once memory for an array has been allocated, you might

find later that it is either too large or too small for current

requirements. The realloc function can resize the array

to better suit current needs. When realloc is invoked,

ptr must point to a memory block obtained by a previous

call of malloc, calloc, or realloc. The size

parameter represents the new size of the block, which can

be smaller or larger than the original size.

Although realloc does not require that ptr point to

memory that is used as an array, it typically does.

COP 3223: C Programming (Dynamic Structures – Part 1) Page 9 © Dr. Mark J. Llewellyn

Dynamic Storage Allocation Functions

• When any of the three memory allocation functions is

invoked to request a block of memory, the function has no

idea what type of data the programmer is planning to store

in the block, so it cannot return a pointer to an ordinary

type such as an int or char. Instead, the function

returns a value of type void *.

• A void * value is a generic pointer – in other words, its

just a memory address with no implied storage type

associated with the address. It really is just and address in

the memory somewhere.

COP 3223: C Programming (Dynamic Structures – Part 1) Page 10 © Dr. Mark J. Llewellyn

Null Pointers

• When any of the memory allocation functions are invoked,

there is always a possibility that it will not be able to

locate a block of memory large enough to satisfy the

request.

• If this happens, the function will return a null pointer. A

null pointer is a pointer than points to nothing. It is a

special value that is used to indicate that the pointer

references no valid address in the memory. The null

value can be used to distinguish such a pointer from all

other valid pointers.

• After the function returns its pointer value, you must

always check to determine if a null pointer has been

returned.

COP 3223: C Programming (Dynamic Structures – Part 1) Page 11 © Dr. Mark J. Llewellyn

Null Pointers

• Null pointers are represented in C by a macro named

NULL (i.e., a C defined constant).

• This makes it easy to test for null pointer values, as shown

below:

//allocate a 10000 byte block of memory

ptr = malloc(10000); //ptr points to the first byte

//in the allocated block

if (ptr == NULL){

//allocation failed – take appropriate action!

}

else //continue execution with allocated block

COP 3223: C Programming (Dynamic Structures – Part 1) Page 12 © Dr. Mark J. Llewellyn

Null Pointers

• Similar to what we usually do with file pointers, the

memory allocation function call and the test for the return

of a null pointer are commonly combined into a single

statement as shown below:

//allocate a 10000 byte block of memory

if ((ptr = malloc(10000)) == NULL){

//allocation failed – take appropriate action!

}

else //continue execution with allocated block

COP 3223: C Programming (Dynamic Structures – Part 1) Page 13 © Dr. Mark J. Llewellyn

Dynamically Allocated Strings

• Dynamic storage allocation is often used when

working with strings. Strings are stored as arrays of

characters and it can be hard to anticipate the length of

the array prior to execution.

• By allocating the string dynamically, the decision

about the length of the array can be postponed until

the program is in execution.

• Using malloc to allocate memory for a string is easy

because C guarantees that a char value requires

exactly one byte of storage.

COP 3223: C Programming (Dynamic Structures – Part 1) Page 14 © Dr. Mark J. Llewellyn

Dynamically Allocated Strings
• Thus to allocate space for a string of n characters, you would

write:

char *ptr;

ptr = malloc(n+1);

• The argument to malloc is n+1 to allow for the „\n‟

character.

• The generic pointer that malloc returns will be converted to

char * when the assignment is performed; no cast is required.

(In general, you can assign a void * value to a variable of any

pointer type and vice versa.)

• However, if you prefer to cast for clarity, it is legal and would

look like:

ptr = (char *) malloc(n+1);

COP 3223: C Programming (Dynamic Structures – Part 1) Page 15 © Dr. Mark J. Llewellyn

Dynamically Allocated Strings

• The example on the next page illustrates a simple application of

malloc.

• In this program, two different calls to malloc create arrays of

29 characters.

• The first pointer returned is used to hold a string of only 4

characters in length. Notice that puts properly prints the

string since the fifth element in the string will be the „\n‟.

However, the loop printing the string prints all the uninitialized

locations in the array as well (since I didn’t stop or look for the

„\n‟ character).

• The second pointer returned is used to hold a string of 29

characters, so in the end there will be no uninitialized locations

in the array, so both puts and the loop will properly print the

string.

COP 3223: C Programming (Dynamic Structures – Part 1) Page 16 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Dynamic Structures – Part 1) Page 17 © Dr. Mark J. Llewellyn

Output from puts

Output from loop – note
uninitialized positions in string

Output from puts

Output from loop – note there

are no uninitialized positions in

string the entire allocation was
used.

COP 3223: C Programming (Dynamic Structures – Part 1) Page 18 © Dr. Mark J. Llewellyn

Dynamically Allocated Strings

• Recall when we were looking at strings in C that the function

strcat, which concatenated two strings together was

destructive in the sense that the second string was added to the

end of the first string and thus the original first string was lost

after the call.

• Suppose, we wanted to write our own string concatenation

function that was not destructive like the built-in function but

maintained the original strings and created a new third string to

hold the concatenation of the other two string.

• Our function will need to determine the lengths of the two

strings to be concatenated and then call malloc to allocate just

the right amount of space for the concatenated string.

• The program on the next page implements this function.

COP 3223: C Programming (Dynamic Structures – Part 1) Page 19 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Dynamic Structures – Part 1) Page 20 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Dynamic Structures – Part 1) Page 21 © Dr. Mark J. Llewellyn

Dynamically Allocated Arrays

• Dynamically allocated arrays have the same basic advantages

as dynamically allocated strings (fairly obvious since strings are

stored as arrays).

• The close relationship between pointers and arrays makes a

dynamically allocated array just as easy to use as a statically

allocated arrays (if you know how to use pointers that is).

• Although malloc can be used to allocate dynamic arrays, it is

often calloc that is used for this purpose, but will start with

an example that uses malloc just to show how its done.

• Unlike, with arrays of characters (strings) where the size of

every element in the array is 1 byte, ordinary arrays contain

elements of various sizes depending on the type of elements in

the array. As a result the sizeof operator is frequently used.

COP 3223: C Programming (Dynamic Structures – Part 1) Page 22 © Dr. Mark J. Llewellyn

Dynamically Allocated Arrays
• The sizeof operator is used to determine the amount space

that is required for each element in the dynamically allocated

array.

• Suppose that we need to declare an array of n integer values,

where n is read in from the keyboard when the program begins

execution. We’d need to do something like this:

int *ptr; //a pointer to an integer

. . .

scanf(“%d”, n); //read in value of n

//allocate n location each the size of 1 int

ptr = malloc(n * sizeof(int));

COP 3223: C Programming (Dynamic Structures – Part 1) Page 23 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Dynamic Structures – Part 1) Page 24 © Dr. Mark J. Llewellyn

Two different runs of

the program on

page 23

COP 3223: C Programming (Dynamic Structures – Part 1) Page 25 © Dr. Mark J. Llewellyn

Practice Problems

1. Write your own version of the strcpy function

similar to the way we wrote the concatenation

function. Make your function non-destructive to both

input parameters.

